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ABSTRACT  
Hyperspectral image registration in previous studies is mostly studied for visible near infrared (VNIR) and 
short wave infrared (SWIR) hyperspectral images. However, the registration of longwave infrared (LWIR) 
hyperspectral images has received comparatively less attention with their thermal and emissivity components. 
In this paper, the problem of image registration for LWIR mages is investigated. The proposed approach 
achieves the registration over the distinctive feature points extracted from two-dimensional (2D) maps of 
three-dimensional (3D) hyperspectral data cubes. The utilized 2D maps are first selected as the brightness-
temperature estimate of hyperspectral pixels in accordance with the dominant thermal component in the LWIR 
radiation. Then, the average energy and the principal components of both the radiance and emissivity 
information for each pixel are also tested for 3D-2D conversion. The performance of the methods is evaluated 
by visually inspecting the generated mosaic images from 2D maps and by objectively comparing the mutual 
information and the structural similarity index between the reference and aligned images. While the 
brightness-temperature estimate and pixel radiance energy give comparable successful results in the 
experiments, the emissivity maps and the principal components do not achieve stable performances. In 
addition, the performance of the registration methods indicates a significant decrease for the images captured 
at different days. 
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1. INTRODUCTION 

Image registration refers to the alignment of the images of the same scene taken at different positions or views 
of the camera. Such an operation usually forms the initial stage to merge the data obtained from different 
acquisitions in order to improve the interpretation of the investigated area [1]. In the context of hyperspectral 
imaging, this operation aims to align the 3-dimensional (3D) data cubes with one additional spectral dimension 
to the spatial dimensions of the 2D image data.  

Hyperspectral image registration is until now treated in two class of methods. The first class of methods 
transforms the hyperspectral data into 2D images and applies the conventional image registration methods for 
the resulting 2D images. Among these approaches, Mukherjee et al. [2] transform the hyperspectral cubes to 
2D images by using principal components and use the feature point based geometric methods for registration. 
This is then improved by using segmentation to properly match different regions of the images [3].  Another 
approach in this class of methods [4] is to utilize optimization based algorithms, which iteratively maximizes 
the mutual information or other statistical similarity metrics between the transformed and references images 
with respect to the planar projective transformation between the resulting 2D images.  

The second class of hyperspectral image registration interprets the 3D data cubes as vector images and finds 
the feature points over vectors rather than pixels [5-6]. The extreme points are determined by properly defining 
the inequality equations over vectors and a Hessian matric defined over vectors are utilized to locate the 
positions of those points. A main disadvantage of this approach is to define uniform inequality operations over 
spectral vectors as spectral bands can have different importance with respect to each other.  
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The related studies on hyperspectral image registration mainly deals with the visible near infrared (VNIR) and 
short wave infrared (SWIR) hyperspectral images. The registration of LWIR images on the other hand is not 
widely studied due to the scarcity and high cost of these data and related sensors, as some of the possible 
reasons. This paper investigates the registration of aerial LWIR hyperspectral images taken at different times 
of the same scene at different camera positions. Considering the challenges of thermal sensor noise in LWIR 
range and the temperature variations from one acquisition to acquisition, different 3D-2D conversion methods 
are proposed and compared, which involves the brightness temperatures of the hyperspectral pixels, the 
average energy, first and second principal components of the radiance components, and the average energy, 
first and second principal components of the emissivity component obtained after temperature emissivity 
separation.  

The following section describes the main steps of the proposed hyperspectral image registration methods based 
in 3D-3D conversions. Section 3 presents the experimental data set. Then, the experimental results are given 
in Section 4 with the discussions with respect to the utilized conversion methods and with respect to the same 
day and different day acquisitions. The conclusions are given in the last section.  

2. PROPOSED REGISTRATION METHODS BASED ON 3D-2D CONVERSIONS  

Figure 1 gives the main steps of the proposed registration methods. The first step converts the 3-dimensional 
hyperspectral cube to the 2-dimensional images by applying a proper transform in the spectral axis. 
Considering the dominant thermal radiation in the LWIR range, the brightness temperature estimate of the 
hyperspectral pixels are assigned to each pixel as the first candidate to obtain 2D maps. The proposed 
estimation method in [7], which minimizes the mean square error between the radiance spectrum and the 
Planck curves iteratively generated for the possible temperatures within a temperature range, is utilized for this 
purpose. Second, the average energy, first principal component and second principal component of the 
radiance spectra are selected to form the 2D maps. Finally, as the complementary component to the 
temperature in the LWIR range, the average emissivity, the first and second components of the emissivity 
spectra are utilized as 2D maps [8].    

After the generation of 2D maps, a noise removal operation is performed by using a median filter and the 
resulting images are scaled to a range of 0-255 by a normalization operation with respect to the maximum and 
minimum values of the 2D maps. This is followed with the keypoint detector and description extraction for 
both of the input hyperspectral images. The results for the Scale Invariant Feature Transform (SIFT) [9] is 
reported for this purpose. Similar conclusions are also obtained for the other methods such as Harris and GOM-
SIFT. The extracted points are then matched by using the RANSAC algorithm [10] and the planar projective 
transformation, namely homography, is estimated with the matched points.  

The results of the transformation are first evaluated by visually inspecting the mosaic images, which are formed 
by overlapping the transformed image with the reference image. The performances are objectively measured 
by computing the structural similarity index (SSIM) and mutual information (MI) between the transformed 
image and reference image.  

3. HYPERSPECTRAL DATA SET 

Two sets of LWIR hyperspectral images are utilized for the experiments. Table 1 gives the details of the images 
and Figure 2 illustrate a sample band from each image. The images are captured with SEBASS sensor [11] 
from a height of 500 m. above ground level. The spectral range of the images is from 7.6 µm -13.5 µm 
involving 128 bands. Both the sets consist of three images, two of which are captured in the same day at 
different times, and third of which is captured in a different day. The performances are both reported for the 
image pairs in the same day and in different days.  
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4. EXPERIMENTAL RESULTS AND DISCUSSIONS   

Figure 3 gives the 2D images after different 3D-2D transformations for the same day pair, LWIR1a and LWIR1b. 
The images are normalized to 0-255 range with respect to their maximum and minimum values. It can be 
observed that brightness-temperature maps, average energy of the radiance spectra and first principal 
component of the radiance spectra give images with similar contrast.  On the other hand, the resulting average 
emissivity maps are low contrast images and therefore, they are passed from histogram equalization as 
indicated in Figure 3 (e).The resulting first principal components for the emissivity spectral have also 
comparatively less contrast with respect to the radiance based transformations and brightness temperature. 
This can be linked with the fact that the temperature and related 2D maps for radiance spectra corresponds the 
coarse part of the spectral changes, whereas the emissivity component can be interpreted as a detailed 
component from the point of signal decomposition theory. Therefore, the spatial contrast is comparatively 
lower for the emissivity based 2D maps.  

Figure 4 (a) illustrates a matching result for the 2D maps obtained with brightness temperatures for the same 
day pair, LWIR1a and LWIR1b. The inliers after the RANSAC algorithms are also shown in Figure 4 (b). The 
matches for the other matches are given in Figure 5 (a)-(f) for the same pair. It can be observed that all the 2D 
maps have enough number of matches to estimate the pose (i.e. planar projective transformation) between the 
pair, LWIR1a and LWIR1b. 

Table 2 gives the ratios of the inliers after the matching to the total number of matched points for all the pairs 
including the same and different day capturing. While brightness temperature maps and average energy gives 
high scores for the same day pairs, namely LWIR1a - LWIR1b and LWIR2a – LWIR2b, the principal components 
for the radiance components as well as the emissivity based maps do not achieve sufficient number of matching 
for the pose estimation in particular, for the pair LWIR2a – LWIR2b. Another important observation regarding 
the matching performances is a severe decrease in the inlier ratios for different days for all the 2D maps. While 
the ratios for the brighness temperatures and average energy of radiance spectra fall to 10-14 % range, the 
matching results for the principal components of the radiance and emissivity based 2D maps are not successful 
for different days.  

Figure 6 gives the mosaic images obtained by overlapping the transformed image with the reference image. In 
particular, the continuity of the lines while passing from one image to the other indicates the success of the 
registration. The geometry of the transformed images is similar for all the proposed 2D conversion methods 
for the LWIR1a - LWIR1b pair. However, the mosaic images, which are given in Figure 7 for the pair captured 
at different days, LWIR1a - LWIR1c, are coarsely aligned compared to the same day results.    

Table 3 gives the mutual information and SSIM between the transformed images and reference images. Both 
the metrics indicate similar behaviours for different pairs. While the brightness temperature and average 
radiance energy gives the best results for the same pair, their performances significantly decrease for  different 
days. The results for the emissivity based maps are not very stable both for the same day and different day 
capturings. Contrary to an initial assumption that the emissivity maps can survive from temperature changes 
and can achieve better matching, the experiments reveal that they do not possess enough contrast for feature 
extraction and matching. However, the temperature maps are still usable to extract and match features even 
though the temperatures modify from time to time.  

5. CONCLUSIONS   

Different methods using 2D maps of temperature, radiance and emissivity components are proposed to register 
hyperspectral LWIR images. The experiments first indicate that the temperature maps and average radiance 
energy are more convenient to extract and match points and to align hyperspectral LWIR images. Although 
the emissivity based 2D maps are expected to be invariant to temperature changes on the images, the results 
reveal that their low contrast are not suitable to properly extract and match the feature points. In addition, the 
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performance of the registration significantly decreases in the case of image pairs taken at different days, 
compared to the image pairs taken at the same day.  

 
Figure 1: General scheme of the proposed registration method 

Table 1: Experimental data set  

Abbreviation Spectral Range  No of Bands Capturing Day Capturing 
Time 

Capturing 
Height  (Above 
ground level)  

LWIR1a 7.6 µm -13.5 µm 128 20 Aug. 2014 18:05 500 m 
LWIR1b 7.6 µm -13.5 µm 128 20 Aug. 2014 16:35 500 m 
LWIR1c 7.6 µm -13.5 µm 128 12 Aug. 2014 18:18 500 m 

LWIR2a 7.6 µm -13.5 µm 128 20 Aug. 2014 18:05 500 m 
LWIR2b 7.6 µm -13.5 µm 128 20 Aug. 2014 16:35 500 m 
LWIR2c 7.6 µm -13.5 µm 128 12 Aug. 2014 18:18 500 m 
LWIR3a 7.6 µm -13.5 µm 128 20 Aug. 2014 18:05 500 m 

LWIR3b 7.6 µm -13.5 µm 128 20 Aug. 2014 16:35 500 m 

LWIR3c 7.6 µm -13.5 µm 128 12 Aug. 2014 18:18 500 m 

 

           
      (a)                (b)               (c)               (d)               (e)              (f) 

Figure 2: Experimental dataset. A sample band around 7.5 μm is used for illustration. (a) LWIR1a, 
(b) LWIR1b, (c) LWIR1c, (d) LWIR2a, (e) LWIR2b, (f) LWIR2c . 
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        (a)                      (b)                        (c)                        (d) 

    
(e)                          (f) 

Figure 3: Generated 2D maps for a sample pair, LWIR1a (left) and LWIR1b (right). (a) Brightness-
temperature estimate, (b) Average energy of radiance spectrum for each pixel, (c) 1st  PCA 

component of radiance spectra, (d) Average energy of emissivity component for each pixel, (e) 
Average energy of emissivity components for each pixel after histogram equalization, (f) 1st PCA 

component of emissivity spectra 
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  (a)                     (b) 

Figure 4: (a) Extracted points with SIFT and matched points for a sample scene from brightness-temperature 
maps, (b) inliers after the RANSAC algorithm. 

 

      
                                      (a)               (b)               (c)                (d)             (e)                 (f) 

Figure 5: Resulting matched points for the pair, LWIR1a - LWIR1b. (a) Average energy of radiance 
spectrum for each pixel, (b) 1st  PCA component of radiance spectra, (c) 2nd  PCA component of 

radiance spectra, (d) Average energy of emissivity component for each pixel, (e) 1st  PCA 
component of emissivity spectra, (f) 2nd PCA component of emissivity spectra 

 

Table 2: Ratio and percentage of inliers after RANSAC for different 2D maps  

Pairs  S/D BT ER PCA1R PCA2R Ee PCA1e PCA2e 
LWIR1a - LWIR1b S 86/176 (49%) 89/163 (57%) 89/173 (51%) 80/167 (48 %) 60/130 (46%) 109/175(62%) 71/156 (50%) 
LWIR1a - LWIR1c D 11/81 (14%) 15/104 (14%) X X 15/87 (17%) 13/101 (13%) X 
LWIR2a– LWIR2b S 25/117 (21 %) 27/119 (23%) X X X X X 
LWIR2a – LWIR2c D 9/89 (10 %) 11/89 (12%) 13/96 (14%) X X  25/103 (24%) X 
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                                               (a)           (b)          (c)           (d)           (e)           (f)          (g) 

Figure 6: Resulting mosaic images for the pair, LWIR1a - LWIR1b. (a) Brighness temperature, (b) 
Average energy of radiance spectrum for each pixel, (c) 1st  PCA component of radiance spectra, 

(d) 2nd  PCA component of radiance spectra, (e) Average energy of emissivity component for 
each pixel, (f) 1st PCA component of emissivity spectra, (g) 2nd PCA component of emissivity 

spectra. 

 

       
(a)       (b)        (c)       (d) 

Figure 7: Resulting mosaic images for the pair, LWIR1a - LWIR1c. (a) Brightness-temperature 
estimate, (b) Average energy of radiance spectrum for each pixel, (c) Average energy of the 

emissivity spectrum  (d) 1st PCA component of emissivity spectra 

Table 3 Mutual information results after the registration for different 2D maps for LWIR-LWIR 
registration 

Pairs S/D 
Mutual Information SSIM 

BT ER PCA1R PCA2R Ee PCA1e PCA2e BT ER PCA1R PCA2R Ee PCA1e PCA2e 
LWIR1a - LWIR1b S 0.52 0.56 0.59 0.95 0.66 0.85 0.68 0.18 0.22 0.22 0.25 0.12 0.17 0.17 
LWIR1a -LWIR1c D 0.26 0.29 X X 0.40 0.40 X 0.08 0.06 X X 0.04 0.07 X 
LWIR2a –LWIR2b S 0.50 0.59 X X X X X 0.12 0.18 X X X X X 

LWIR2a –LWIR2c D 0.50 0.62 0.64 X X 0.94 X 0.07 0.08 0.08 X X 0.14 X 
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